Тепловая обработка бетона ускоряет реакции гидратации вяжущих веществ, повышает интенсивность нарастания структурной прочности, сокращает технологический цикл изготовления. Для прогрева композиционного материала до 80 – 100˚C и выше используют различные установки тепловой обработки непрерывного и периодического принципа действия (автоклавы, камеры, кассетные формы). В качестве теплоносителя используют паровоздушную смесь, электромагнитное поле, электрический ток. Выбор способа обработки зависит от экономических и технических показателей, установленной технологии изготовления.

На заводах ЖБИ широкое распространение нашёл метод тепловлажностной обработки (теплоноситель – паровоздушная смесь). Процесс разделен на три этапа - подогрев, выдержка, охлаждение. На первых двух этапах в камеру подаётся нагретый пар, на третьем этапе установку охлаждают и вентилируют, удаляя из бетона лишнюю влагу. Сложность физических процессов, несоблюдение технологических норм могут привести к образованию трещин и появлению деформаций.

Причины остаточных деформаций

  1. Сокращение сроков выдерживания смеси в естественных условиях перед загрузкой в установку (оптимальное время выдержки – 2 – 4 часа с момента формирования раствора, требуемая прочность состава – 0,3 – 0,5 МПа).
  2. Резкие температурные перепады в камере, не соответствующие установленным нормам.
  3. Ячеистый бетон в качестве основного состава (содержит большой процент воды).
  4. Большая площадь поперечного сечения изделия.
  5. Тепловыделение при твердении бетонной смеси.

Тепловыделение и калориметрический анализ

Взаимодействие воды с клинкерными минералами сопровождается выделением тепловой энергии. Вследствие этого температура бетона при начальном твердении повышается. Уровень повышения зависит от массивности конструкции и состава бетона. Процессу сопутствует тепловое расширение материала, превышающее усадку.

Неравномерный разогрев бетона, быстрое охлаждение поверхностных слоёв, сохранение высокой температуры внутри изделия приводит к возникновению растягивающих термических напряжений. Если они преодолевают собственную прочность бетона на растяжение, в нём образуются трещины.

Применительно к бетону количественное измерение выделенного тепла (калориметрия) – самый надёжный и точный метод экспериментального анализа. Он позволяет оценить кинетику процесса твердения, влияние на структуру и прочность бетона различных факторов. Исследование проводится в калориметрах трёх типов: изотермическом, термосном и адиабатическом.

  • Изотермический калориметр позволяет поддерживать постоянную температуру образцов бетона. Данные измерений тепловыделения, полученные таким способом, наиболее достоверные.
  • Термосный калориметр не может обеспечить изотермический температурный режим для образцов бетона, они твердеют в случайном режиме. Благодаря простоте устройства, способ используется довольно часто. Полученные данные методом специальных расчётов и вычислений переводят на изотермический режим твердения.
  • Адиабатический калориметр применяется редко и, как правило, для определения тепловыделения крупных массивов бетона.

Разрушение под действием высоких температур

При температуре свыше 200˚C в бетоне запускаются деструктивные процессы. Постепенное снижение прочности обусловлено дегидратацией материала и распадом связующих соединений. Степень разрушения находится в прямой зависимости от роста температурного интервала. Непрерывное нагревание цементного камня до 1200˚C приводит к снижению прочности опытных образцов бетона до 35 – 40 %. Портландцемент разрушается при температуре 800˚C. Повышает устойчивость бетона к температурным воздействиям введение в его состав различных минеральных добавок.

Огнестойкость бетона

Цементный камень и связующие материалы имеют различные показатели температурного коэффициента линейного расширения. Такое несоответствие в условиях пожара может привести к снижению несущей способности бетонных сооружений, появлению сквозных трещин, полному разрушению. Поэтому, предел огнестойкости – один из важных критериев бетонных конструкций.

Показатель измеряется временным промежутком, в течение которого сохраняются несущие и ограждающие функции сооружения. Определяется опытным путём, во время которого образцы бетона подвергаются температурному воздействию в специальной установке. Соответствует двум – пяти часам.

Термостойкость бетона

Термостойкость - устойчивость бетонных конструкций к сочетанному действию механических и термических (охлаждение, нагрев) напряжений. У конструкций различного назначения этот показатель отличается. Самые жёсткие требования предъявляются к термостойким сооружениям, эксплуатирующимся в условиях максимальных нагрузок.

Источник: regionstroibeton.ru